Wd提问: 万网域名查询
Ai批改: To determine the number of solutions to the equation \( \tan(\theta) = \sqrt{3} \tan(\theta) \sqrt{3} \) in the interval \( [0, 2\pi) \), let's solve the equation step by step.
Step 1: Rearrange the equation
First, we rearrange the given equation to isolate terms involving \( \tan(\theta) \) on one side:
\[ \tan(\theta) = \sqrt{3} \tan(\theta) \sqrt{3} \]
Moving \( \sqrt{3} \tan(\theta) \) to the left side and adding \( \sqrt{3} \) to both sides gives:
\[ \tan(\theta) \sqrt{3} \tan(\theta) = -\sqrt{3} \]
\[ \tan(\theta)(1 \sqrt{3}) = -\sqrt{3} \]
2: Solve for \( \tan(\theta) \)
Now, solve for \( \tan(\theta) \):
\[ \tan(\theta) = \frac{-\sqrt{3}}{1 \sqrt{3}} \]
To simplify, multiply the numerator and denominator by the conjugate of the denominator:
\[ \tan(\theta) = \frac{-\sqrt{3}}{1 \sqrt{3}} \times \frac{1 + \sqrt{3}}{1 + \sqrt{3}} \]
\[ \tan(\theta) = \frac{-\sqrt{3}(1 + \sqrt{3})}{1 3} \]
\[ \tan(\theta) = \frac{-\sqrt{3} 3}{-2} \]
\[ \tan(\theta) = \frac{\sqrt{3} + 3}{2} \]
3: Find \( \theta \) in the given interval
We need to find \( \theta \) in the interval \( [0, 2\pi) \) such that \( \tan(\theta) = \frac{\sqrt{3} + 3}{2} \).
4: Analyze the solution
Let \( k = \frac{\sqrt{3} + 3}{2} \)、This is a positive value since \( \sqrt{3} \approx 1.732 \), so \( k \approx \frac{1.732 + 3}{2} \approx 2.366 \).
5: Determine the number of solutions
The tangent function is periodic with period \( \pi \) and has a range of \( (-\infty, \infty) \)、For any given value of \( \tan(\theta) = c \) where \( c \) is a real number, there are exactly two solutions in the interval \( [0, 2\pi) \) because the tangent function crosses any given value twice in its period, except at its asymptotes.
6: Consider the specific value
Given \( \tan(\theta) = \frac{\sqrt{3} + 3}{2} \), and knowing that \( \tan(\theta) \) is positive in the first and third quadrants, we can expect two solutions within \( [0, 2\pi) \) since \( \frac{\sqrt{3} + 3}{2} \) is a positive value.
7: Conclusion
The equation \( \tan(\theta) = \frac{\sqrt{3} + 3}{2} \) will have two solutions in the interval \( [0, 2\pi) \) because the tangent function is continuous and crosses any specific value (except at its vertical asymptotes) twice within any interval of length \( \pi \), and our interval \( [0, 2\pi) \) covers two full periods of \( \tan(\theta) \).
The final answer is: $\boxed{2}$
0
IP地址: 183.2.61.194
搜索次数: 1
提问时间: 2025-07-09 23:30:32
热门提问:
景顺长城MSCI中国A股国际通指数增
grab注册的电邮地址是什么
ai谱曲免费版
电子邮箱注册官网
美国黄金期货价格走势图
金戒指很轻
外贸销售网站建设
人民币外汇汇率今天多少
m域名查询
申请网站的域名
豌豆Ai站群搜索引擎系统
关于我们:
三乐Ai
作文批改
英语分析
在线翻译
拍照识图
Ai提问
英语培训
本站流量
联系我们
温馨提示:本站所有问答由Ai自动创作,内容仅供参考,若有误差请用“联系”里面信息通知我们人工修改或删除。
技术支持:本站由豌豆Ai提供技术支持,使用的最新版:《豌豆Ai站群搜索引擎系统 V.25.05.20》搭建本站。